A Low Cost Analog and Digital TV (DVB-T) Modulator

News

(Jun 13, 2005) First public release

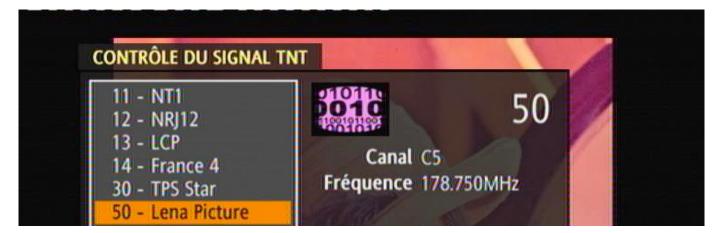
What is it?

This is not a hoax! With a PC running Linux and a recent VGA card, you can emit a real digital TV signal in the <u>VHF band</u> to your <u>DVB-T</u> set-top box.

DVB-T emitters are usually very expensive professional devices. Now with a standard PC you can broadcast real DVB-T channels!

Examples to transmit PAL or SECAM analog signals directly to your TV are also presented.

What do you need?


- A good knowledge of X Window and Linux and basic knowledge in electronics.
- A DVB-T set-top box able to receive VHF signals with a bandwidth of 8 MHz (unfortunately most decoders sold in UK only receive UHF signals). You can use French DVB-T receivers which accept VHF and UHF RF signals.
- A PC with a recent VGA card able to display in resolutions up to 4096x2048 with 8 bit per pixel with a pixel clock of exactly 76.5 MHz. ATI Radeon 9200SE are reported to work (their PLL can generate every frequency which is a multiple of 2.25 MHz up to 400 MHz). Other VGA cards may work too. If your card cannot generate a 76.5 MHz pixel clock, I can provide alternate images to do some testing.
- A cable connecting the <u>VGA output</u> to the set-top box RF input. It is possible to use antennas, but since the transmit power is very low, it is better to begin with a cable connection.


```
15 pin VGA connector 9.5mm RF connector

1 (red signal) <----> RF signal (central pin)
6 (red ground) <----> GND
```

Screenshots

Here are some screenshots showing the transmitted pictures. A <u>Netgem iplayer</u> DVB-T set-top box was used as receiver. The On Screen Display of the set-top box shows the signal parameters and quality. The pictures were grabbed using a PC TV grabber connected to the composite video output of the set-top box.

How to proceed?

 Add the following configuration at the end of your X Window server configuration file (usually /etc/X11/XF86Config or /etc/X11/Xorq.conf):

```
#VGA modulator config
Section "Monitor"
        Identifier
                     "MonitorDAC"
        VendorName
                    "Monitor Vendor"
        HorizSync
                    1.0 - 200.0
                    1.0 - 200.0
        VertRefresh
        Mode "dac1"
        DotClock 76.50
        # PAL/SECAM
        HTimings 4064 4064 4072 4080
        VTimings 748 748 749 750
        EndMode
        Mode "dac2"
        # DVB-T
        DotClock 76.50
        HTimings 3656 3656 3664 3672
VTimings 1307 1307 1308 1309
        EndMode
EndSection
Section "Screen"
        Identifier "ScreenDAC"
        Device
                   "Videocard0'
        Monitor
                   "MonitorDAC"
        DefaultDepth
        SubSection "Display"
               Depth
               Modes
                        "dac2"
        EndSubSection
EndSection
```

This configuration won't be used by default by the X Window server, so you can leave it in your default X Window configuration. videocard0 is assumed to be the name of your default video card.

• Launch an X server using this configuration (we assume the display:0 is your already running X11 display):

```
X :1 -ac -screen ScreenDAC
```

Your monitor will of course not be able to display anything because the timings are far from correct VESA timings. Unless you are using a very old monitor, there is no chance you can destroy it...

Wait a few seconds and switch back to the starting X11 display (in most Linux distributions Ctrl-F7 does it). Then look at the X11 log file to see if everything was OK (usually in /var/log/XFree86.1.log or /var/log/Xorg.1.log).

• Download the following gray level image: dvbt.pgm.gz and decompress it.

```
Display it on the :1 X11 display:
```

```
display -display :1 -window root dvbt.pgm
```

- Switch to the :1 display (usually with Ctrl-F8 or Ctrl-F9, your monitor will blank) and connect the set-top box RF input to the VGA output using the cable you made.
- Configure your DVB-T set-top box to do a manual scan on channel 5 (178.75 MHz central frequency). After a few seconds, it should find a valid DVB-T signal (parameters: QAM 16, fft=2K, guard=1/32, conv=2/3). Two new channels should appear: *Lena Picture* and *Balears Picture*. Each one should display a nice still picture.
- You can also try the PAL (<u>pal.pgm.gz</u>) or SECAM (<u>secam.pgm.gz</u>) analog signals. You need to connect the VGA cable directly to your TV RF input and to use the dac1 X11 mode instead of dac2 (edit the X11 configuration file):

```
SubSection "Display"
Depth 8
Modes "dacl"
EndSubSection
```

Then by tuning your TV on the VHF channel 5 (176.00 MHz image frequency) you should see a black and white Lena

picture.

How does it work?

Every VGA card contains high speed <u>Digital to Analog Converters</u> (DACs), one for each Red, Blue and Green component. Here we use only the red DAC. The provided images have been computed so that the signal output to the DAC is a valid RF signal.

As we did not want to generate a 176 MHz signal directly, we use the fact that the VGA DACs generate a lot of harmonics. The real generated DVB-T signal has a central frequency of 25.71 MHz. Then the second harmonic has a frequency of 25.71+2*76.5 = 178.71 MHz which is almost exactly the central frequency of the VHF TV channel 5.

The DVB-T signal is generated with a DVB-T and DVB-H modulator I wrote from scratch. This is the most complicated step because the DVB-T modulation is quite complicated (COFDM modulation). A custom polyphase filter is used to interpolate the baseband COFDM complex signal. Then it is translated to the 25.71 MHz frequency.

I used a patched version of <u>FFmpeg</u> to generate a custom DVB Transport Stream containing two DVB services. Each one contains a still MPEG picture. One of the still picture is the very nice <u>Lena</u>.

For PAL and SECAM, I also wrote a simple TV black and white PAL encoder. Adding color would be possible, but I am not motivated enough to do it :-)

Related links

- <u>Tempest for Eliza</u> is an AM radio modulator also using a VGA card. I got the idea of transmitting TV signals with a VGA card by looking at this project.
- The GNU Radio project contains source code for several modulators.

Interesting Ideas

- This project can be the basis of a real time low cost DVB-T and DVB-H modulator. Interested compagnies can contact
 me if they want to subsidize such a project. It can be very useful to test DVB-T set-top boxes, DVB-H cell phones and
 to test interactive broadcasted DVB-T or DVB-H applications.
- This project, coupled with the <u>GNU Radio project</u>, can be the basis of many student projects to study digital communications. Compared to other solutions, it has the advantage of a very low cost (PCs are available everywhere). Students could write their own modulation code and immediately test the result with a DVB-T set-top box for example. Interested universities can contact me.
- With a very simple analog frequency translator, it could be possible to reach a better SNR (currently 14 dB is the maximum I could get in the VHF band) and higher frequencies.
- Color encoding could be added to the PAL/SECAM encoder and NTSC support.

Where is the source code?

It is currently not available, although I plan to release it someday, provided enough people ask me to.

Copyright (c) 2005 Fabrice Bellard.

Fabrice Bellard - http://bellard.org/